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Introduction

§ Tumor segmentation on digitalized slide images 
has been plagued by problems related to the 
patch-based approach attributable to the narrow 
and limited field-of-views.   

§ Our goal is to develop a speedy tumor segmentation algorithm that 
overcomes performance degradation arising from the limitations of 
the patch-based approach.

§ To achieve our goal, we explored the effect of the fused lasso 
regularization on segmentation performance using gastric cancer 
pathology images. 



Materials and methods (Data)

§ We used 27 specimens with 
partial annotation from tissue-
microarrays (TMAs) with gastric 
cancer from Asan Medical Center. 

Class labels: tumor, stroma, benign epithelial, fat, muscle



Materials and methods (Workflow)

§ Our segmentation adjustment method was tested on multiple renowned 
deep learning architectures to detect malignancy on tissue slides.



Materials and methods (Formula)

§ The fused lasso is a regularizing technique used to estimate a spatially 
assembled trend changing abruptly in sparse locations. 

§ Two types of penalty terms, called lasso and fusion penalty, are 
imposed on the ordinary squared loss to reconstruct the underlying 
relationship among variables.  

§ In our fused lasso application, these penalties were adopted to 
regularize variables with ℓ"-norms based on both the patchwise
prediction probabilities (for all β$,&’s) and their pairwise differences 
between adjoining patches (e.g., β$,& and β$'",&)

§ Tuning-parameters,  λ" and  λ), control the degree of regularizing effect.



Materials and methods (Tuning-parameters)

Ground truthProposedBaseline CNNH&E image



Results

§ The average test performance in terms of IOU, dice, accuracy, 
precision, recall, and AUROC increased by a degree of 3.74%p, 
3.27%p, 0.93%p, 5.32%p, 3.20%p , and 1.58%p, respectively. 

(Optimized on a single GPU Titan X Pascal processor)



Conclusions

§ We demonstrated that adoption of fused lasso penalties can produce 
segmentation close to that generated by experts without a significant 
increase in computing time. 
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