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Tumor segmentation on digitalized slide images

has been plagued by problems related to the
patch-based approach attributable to the narrow 0
and limited field-of-views.

Our goal is to develop a speedy tumor segmentation algorithm that
overcomes performance degradation arising from the limitations of
the patch-based approach.

To achieve our goal, we explored the effect of the fused lasso
regularization on segmentation performance using gastric cancer
pathology images.
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= We used 27 specimens with
partial annotation from tissue-
microarrays (TMAs) with gastric
cancer from Asan Medical Center.

Class labels: tumor, benign epithelial, fat, muscle
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Materials and methods (Workflow)
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Our segmentation adjustment method was tested on multiple renowned

deep learning architectures to detect malignancy on tissue slides.
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Materials and methods (Formula)
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= In our fused lasso application, these penalties were adopted to
regularize variables with £;-norms based on both the patchwise
prediction probabilities (for all 3; ;’s) and their pairwise differences

between adjoining patches (e.g., B;; and ;44 )
= Tuning-parameters, A; and A,, control the degree of regularizing effect.
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The average test performance in terms of IOU, dice, accuracy,
precision, recall, and AUROC increased by a degree of 3.74%p,
3.27%p, 0.93%p, 5.32%p, 3.20%p , and 1.58%p, respectively.

Architecture ~ Method (A1, A2) IOU Dice Accuracy  Precision Recall AUROC
AlexNet (0,0) 0.521022 0.685095 0.913913 0.691466 0.678840 0.946606
(0.29,0.06) 0.617225 0.763314 0.928878 0.705561 0.831364 0.969972
DenseNet-121 (0,0) 0.592014 0.743730 0.930360 0.755260 0.732546 0.970133
) (0.42,0.14) 0.660262 0.795371 0.942362 0.779381 0.812030 0.977791
ResNet-18 (0,0) 0.550442 0.710046 0.924730 0.757613 0.668099 0.964167
(0.48,0.27) 0.447368 0.618182 0.915988 0.828520 0.493018 0.975162
ResNet-50 (0,0) 0.295495 0.456189 0.884131 0.646943 0.352309 0.952945
(0.37,0.13) 0.338249 0.505510 0.893614 0.704415 0.394200 0.961517
SqueezeNet (0,0) 0.430973 0.602350 0.904727 0.709913 0.523093 0.944146
(0.36,0.15) 0.513692 0.678727 0.923692 0.809524 0.584318 0.972626

(Optimized on a single GPU Titan X Pascal processor)
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We demonstrated that adoption of fused lasso penalties can produce
segmentation close to that generated by experts without a significant
increase in computing time.
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