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Introduction



Movements with Momentum

Most stochastic models used in quantitative finance and insurance
assume the Markov property because of its mathematical tractability.
One commonly observed phenomenon violating the Poisson arrival as
well as the Markov assumption is the momentum effect.
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Beyond the Markov Models

Does the concept of the “momentum effect” apply to health transition
dynamics?
To capture this momentum effect, what alternative methods can we
use?

7



Introduction

Understanding the dynamics of health transition is crucial for pricing
aged care products effectively in the evolving health market.
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Previous Studies
Much research on multi-state health transition models has relied on
the Markov property, where future states depend only on the current
state, irrespective of past history.

Fong et al. (2015) proposed using a generalized linear model to estimate
age- and sex-specific transition rates.
Hanewald et al. (2019) adapted this approach to include deterministic
time trends.
Li et al. (2017) and Sherris and Wei (2021) expanded it into a
stochastic model using a multi-state latent factor intensity model to
account for systematic trends and uncertainties in health transitions.

Research demonstrates that probabilities of functional status
transitions are duration-dependent. This line of study employs
semi-Markov process models, which consider age, current status,
and duration in the current state.

Hardy and Gill (2005), Hardy et al. (2006), Cai et al. (2006), and Biessy
(2017) have investigated this duration dependency in future transitions.
However, the state and duration effect with respect to the past
functional disability experience has been less studied.
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Motivation

Figure 1. Crude health transition rates with respect to the number of past
functional disabilities.

Our explanatory data analysis suggests that the elderly with prior
functional disabilities are at higher risk of experiencing it again and
have higher mortality rates than those without a history of disability. 10



Backgrounds



Momentum and a Hawkes Process

A counting process with a stochastic intensity is called a doubly
stochastic Poisson process.
A Hawkes process (Hawkes, 1971) is a popular doubly stochastic
process with self-exciting properties; an event occurrence increases the
probability of the occurrence of another event.
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Momentum and a Hawkes Process
Definition
A Hawkes process is a point process N(t) which is characterized by its
conditional intensity λ(t) with respect to its natural filtration:

λ(t|Ft−) = ϕ(t) +
∫ t

0
µ(t − s)dN(s), (1)

where ϕ(t) is the background intensity function, and the µ(t) is the
excitation function satisfying

∫∞
0 µ(s)ds < 1.

Hawkes processes model self-exciting properties in diverse fields:
Finance: hawkes2018hawkes; da2017correlation
Insurance: JungLeeXu; Swishchuk et al. (2021)
Epidemiology: browning2021simple
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Goal

Our goal is to estimate the intensity of age and gender-specific
transitions by incorporating the impact of the past functional disability
as well as time spent in the current state using a self-exciting process.
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Four-State
Health Transition Model



Four-State Health Transition Model I

H F A

D

s = 1
s = 2

s = 3

s = 4 s = 5
s = 6

Figure 2. The four-state health state transition model. H means healthy; F means
functionally disabled or simply disabled; A means reactivated; D means dead. The
notation s represents the type of transitions.
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Four-State Health Transition Model II
The transition intensity for individual k of transition
type s ∈ {1, 2, 3, 4, 5, 6} at time t is given by

λs(t) = ϕs(t)
background intensity

+ µs(t − Tt)
exciting function

· 1F(t)
disability indicator

ϕs(t) captures the impact of observable variates such as the (scaled)
age xk(t) and the gender indicator Fk at time t.

ϕs(t) = exp(β intercept
s + βage

s xk(t) + βfemale
s Fk)

ϕ1(t) = ϕ3(t) and ϕ4(t) = ϕ6(t)
µs(·) captures the impact of the past functional disability and the
duration in the current state (t − Tt, where Tt is the latest transition
time).

1F(t) = 0 if in the healthy state at time t.
λ1(t) = ϕ1(t) and λ4(t) = ϕ4(t).
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Four-State Health Transition Model III

Choice of Hawkes kernels µs(·):
Exponential kernel (monotonic decay):

µs(x) = αs e−δsx, αs ≥ 0, δs > 0, αs < δs.

Rayleigh kernel (non-monotonic decay):

µs(x) = θs(x + κs) e−ηs(x+κs)
2/2, θs ≥ 0, ηs > 0, κs > 0, θs < ηs.
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Data Preparation I

We use the RAND HRS Data 1992-2018 from the U.S. Health and
Retirement Study (HRS), a nationally representative longitudinal panel
survey.1

The HRS is a biennial survey which began in 1992 and follows up with
interviews of initially non-institutionalised Americans aged 50 and
above.
The health state is determined by a person’s ability to perform
activities of daily living (ADLs), such as bathing, toileting, and
dressing.

1https://hrs.isr.umich.edu/data-products
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Data Preparation II

Figure 3. Six activities of daily livings (ADLs) (credit: adl)

Two or more ADL dependencies indicate functional disability, in line
with long-term care insurers’ practice.
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Estimation



Maximum Likelihood Estimation
Suppose there are a total of K individuals, S transition types, and J
interview waves. The complete log likelihood function is given by

l (θ) =
K∑

k=1

S∑
s=1

J−1∑
j=1

lk,s,j (θ) , (2)

where θ denotes the set of parameters to be estimated, and

lk,s,j (θ) = Yk,s,j lnλk,s(̂tk,j)− Rk,s(tk,j)

∫ min{t̂k,j,tk,j+1}

tk,j

λk,s(u)du

− Rk,s(̂tk,j)

∫ tk,j+1

min{t̂k,j,tk,j+1}
λk,s(u)du,

Here, we introduce two indicator variables: (1) Yk,s,j = 1 if transition type s
is observed between the jth and (j + 1)th interviews, and (2) Rk,s(t) = 1 if
the individual is exposed to the risk of transition type s at time t. 22



Estimation under Left Truncation & Censoring I

When an individual joined the survey after the age of 50 and he/she
was not in a functionally disabled state, we cannot observe

1. 1F(t1): presence of past functional disability
2. Tt1 : the latest transition time before the first interview (if any)

We use an EM algorithm to find maximum likelihood estimates in the
presence of missing values.
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Estimation under Left Truncation & Censoring II
MCEM-algorithm for Hawkes process

1. Initialize θ(1): We initialize the parameters assuming no truncation.
2. For i = 1, 2, 3, . . . , iterate E-step and M-step until convergence

2.1 E-step: Since analytical solution is unavailable, we perform Monte
Carlo approximation to obtain the Q value:

Q(θ|θ(i)) = E
1F,τtrunc|data,θ(i) [l(θ)] = E

1F|data,θ(i)

[
Eτtrunc|1F,data,θ(i) [l(θ)]

]
(3)

We use 10,000 simulated individual’s health transition history sampled
from θ(i).

2.2 M-step: We use numerical optimization algorithm to obtain the next
estimates2

2We use the quasi-Newton method for numerical optimization.
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Results



Estimation Results I. Goodness of Fits: LRT
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Estimation Results I. Goodness of Fits: LRT

Our goodness-of-fit results demonstrate that a health transition history
has a significant impact on future health transitions.
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Estimation Results I. Goodness of Fits: AIC&BIC

The Rayleigh kernel, where the past transition effect does not decay
immediately following a transition, has a better goodness-of-fit than
the exponential kernel.
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Estimation Results II. Estimated Kernels

Figure 4. Estimated Hawkes kernels for exponential and Rayleigh kernels
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Estimation results III. Future Life Expectancy

30



Estimation Results IV. Insurance Pricing

31



Estimation Results IV. Insurance Pricing

LTCI is notoriously difficult to price, and our simulations suggest that
the premium is extremely sensitive to different model assumptions.
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Estimation Results IV. Insurance Pricing

Bundling LTCI with life annuities (life care annuity) can potentially
reduce the impact of model misspecification on LTCI pricing.
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Conclusion



Discussions and Conclusions

We developed a four-state health transition model that accounts for
the effects of past functional disabilities on future states.
Utilizing a self-exciting process, the model effectively captures how
recent health transitions influence future transitions.
Our contributions extend beyond model development to significant
improvements in estimation techniques.
We also calculated insurance pricing for life annuities and long-term
care policies, demonstrating how bundling can mitigate risks
associated with model misspecification in pricing.
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