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Introduction

• Understanding individual health transitions such as functional disability, recovery and
mortality is essential to product pricing and development.

• Prior literature usually assumes Markov property for modelling health transitions, for
which the probabilities of transition at each age depend on the current status only
(see e.g., Fong et al., 2015; Li et al., 2017; Sherris and Wei, 2021).

• Showing that the probabilities of functional status transitions are duration
dependent, other literature (Cai et al., 2006; Biessy, 2017) assumes semi-Markov
process model to incorporate not only age and the current status but also on the
duration in the current state.

• However, the state and duration effect with respect to the past functional disability
experience has been less studied.
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Motivation
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Figure 1. Crude health transition rates of functional disability and healthy mortality. The legend
indicates the number of past functional-disabilities during the investigation period.

• Our explanatory data analysis suggest that the elderly who have experienced
functional disability have a higher chance of functional disability and mortality than
those who were never disabled before.
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Hawkes process

Figure 2. Graphs of a homogenous Poisson process, inhomogeneous Poisson process, and Hawkes
process on the real line.

• Hawkes process is a self–exciting point process, in which the occurrence of an event
increases the probability of occurrence of another event.
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Goal

• Our goal is to estimate the intensity of age and gender-specific transitions by
incorporating the impact of past functional disability as well as time spent in the
current state using Hawkes process.
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Three-state health transition model
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Data preparation

• We use the RAND HRS Data 1992-2018 from the U.S. Health and Retirement Study
(HRS), a nationally representative longitudinal panel survey.1

• The HRS is a biennial survey which began in 1992 and follows up with interviews of
initially non-institutionalised Americans aged 50 and above.

• The health state is determined by a person’s ability to perform activities of daily
living (ADLs), such as bathing, toileting, and dressing; An individual needing help in
two or more ADLs is functionally disabled.

1https://hrs.isr.umich.edu/data-products
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Hawkes transition intensity
The transition intensity for individual k of transition type s at time t is given by

λs(t) = ϕs(t)
background intensity

+ µs(t − Tt)
exciting function

· 1F (t)
disability indicator

, (1)

where Tt is the latest transition time before time t.

Figure 3. The three-state health transition model. H means healthy; F means functionally
disabled; D means dead.
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Hawkes transition intensity
• ϕs(t) is the Gompertz background intensity that captures the impact of observable
variates such as (scaled) age xk(t) and gender indicator Fk at time t

ϕs(t) = exp(βintercept
s + βage

s xk(t) + βfemale
s Fk) (2)

• µs(·) is the exciting kernel function that captures the impact of past functional
disability and duration in the current state

µs(τ) = αs exp (−δsτ) (exponential decay) (3)

• 1F (t) is the indicator of past functional disability experience

1F (t) =

{
1 if functionally disabled at least once before time t

0 otherwise
(4)
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Maximum likelihood estimation

12 / 22



Estimation under left truncation and censoring

Figure 4. Example of an individual’s health transition history. tj is the time for j th interview.

When an individual was first observed after the age of 50 and he/she was not in the
functionally disabled state, we have

1. unknown 1F (t1): presence of past functional disability

2. unobserved Tt1 : the latest transition time before the first interview (if any)
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EM-algorithm

We use the EM algorithm to perform the estimation.

General scheme of EM-algorithm

1. Initialize θ(1)

2. For i = 1, 2, 3, . . . , Iterate E-step and M-step until convergence
2.1 E-step: Compute the conditional expectation of the log likelihood function given the

current estimate
Q(θ|θ(i)) = EXunobserved |Xobserved ,θ(i) [l(θ)] (5)

2.2 M-step: Update θ
θ(i+1) = argmaxθQ(θ|θ(i)) (6)
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EM-algorithm

EM-algorithm for Hawkes health transition model:

EM-algorithm for Hawkes process

1. Initialize θ(1): We initialize the parameters assuming no truncation.
2. For i = 1, 2, 3, . . . , Iterate E-step and M-step until convergencea

2.1 E-step: Since analytical solution is unavailable, we perform Monte Carlo approximation
to obtain the Q value:

Q(θ|θ(i)) = E
1F ,τtrunc |data,θ(i) [l(θ)] = E

1F |data,θ(i)

[
Eτtrunc |1F ,data,θ(i) [l(θ)]

]
(7)

We use 10,000 simulated individual’s health transition history sampled from θ(i).
2.2 M-step: We use numerical optimization algorithm to obtain the next estimatesb.

aIterate until the difference between the current and previous Q value is less than 10−2

bWe use optim function in R
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Results
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Estimation results

Model p* LRT statistic (df)† AIC BIC

Static model (non-Hawkes) 12 - 169,437.66 169,533.87
Single Hawkes: disability 14 2,020.3***(2) 167,421.31 167,533.56
Single Hawkes: recovery 14 213.3***(2) 169,228.31 169,340.56
Single Hawkes: healthy mortality 14 46.8***(2) 169,394.83 169,507.08
Single Hawkes: disabled mortality 14 48.5***(2) 169,393.13 169,505.37
Full Hawkes: all four-transition 20 ≥ 336.4***(6) 167,096.90 167,257.26
* number of parameters
† Static v. Single Hawkes; Single Hawkes v. Full Hawkes

Table 1. Likelihood ratio test, AIC, and BIC statistics of health transition models.
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Estimation results

Figure 5. Maximum likelihood estimates of static and Hawkes model parameters. Hawkes
parameters are estimated using EM algorithm.
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Future lifetime statistics

Healthy at 65 Healthy at 75
Female Male Female Male

Static Hawkes Static Hawkes Static Hawkes Static Hawkes

Healthy proportion 0.84 0.84 0.82 0.82 0.63 0.61 0.57 0.56
Total future lifetime 19.06 19.31 16.36 16.68 12.43 12.58 10.31 10.47

(SE) (0.06) (0.06) (0.06) (0.06) (0.05) (0.05) (0.04) (0.04)
SD 9.06 8.93 8.37 8.33 7.01 6.94 6.18 6.22

Healthy future lifetime 16.21 15.95 14.71 14.73 10.22 10.08 9.09 9.12
(SE) (0.06) (0.06) (0.06) (0.06) (0.05) (0.05) (0.04) (0.04)
SD 8.55 8.67 8.08 8.21 6.51 6.54 5.90 6.03

Disabled future lifetime 2.85 3.36 1.65 1.96 2.21 2.49 1.23 1.35
(SE) (0.03) (0.04) (0.02) (0.03) (0.02) (0.03) (0.02) (0.02)
SD 4.09 5.04 3.04 3.72 3.39 3.95 2.43 2.74

Healthy over total future lifetime 0.86 0.84 0.90 0.89 0.83 0.82 0.89 0.88
(SE) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
SD 0.20 0.23 0.18 0.20 0.24 0.26 0.21 0.23

Age at onset of disability‡ 77.89 78.58 77.03 77.36 83.52 83.80 82.63 82.95
(SE) (0.06) (0.06) (0.05) (0.06) (0.04) (0.04) (0.04) (0.04)
SD 8.39 8.66 7.70 8.07 6.17 6.31 5.54 5.79

‡ Age at onset of disability conditional on becoming disabled after the age of 65 and 75

Table 2. Average future lifetime statistics for 50-year-old healthy individuals who are healthy at
65 and 75, including standard error of the mean in brackets and SD. The maximum attainable
age is 110.
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Conclusion
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Conclusion

• We proposed a multi-state health transition model with Hawkes process which can
be numerically estimated via EM algorithm.

• We showed that our Hawkes model successfully incorporated the impact of past
functional disability as well as time spent in the current state.

• In particular, our estimation results suggest that the functional disability and
mortality intensities significantly increase on the onset of the disability and decay as
the duration since the latest transition gets longer.

• Our future work will extend our choice of Hawkes kernels to allow for delaying effect
in the speed of decay. (e.g., Rayleigh kernel).
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Conditional intensity

Definition

(Conditional intensity function) Consider a counting process N(t) with associated
histories FN(t), t ≥ 0. If a non-negative function λ(t) exists such that

λ(t) = lim
h→0

E
[
N(t + h)− N(t)|FN(t)

]
h

, (8)

then it is called the conditional intensity function of N(t). Note that this function is also
called the hazard function.
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Hawkes process

Definition

(Hawkes process) The one-dimensional Hawkes process is a point process N(t) which is
characterized by its conditional intensity λ(t) with respect to its natural filtration:

λ(t) = ϕ(t) +

∫ t

0
µ(t − s)dN(s), (9)

where ϕ(t) is the background intensity function, and the µ(t) is the excitation function
satisfying

∫∞
0 µ(s)ds < 1.
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EM-algorithm

E-step (evaluation):

In the presence of left-truncation, we can split the log likelihood terms into two terms
with/without truncation;

log L (θ|{1f , τtrunc}) =
K∑

k=1

S∑
s=1

 ∑
j :tj<inf

i
t̂i

lk,s,j (θ)
∑

j :tj≥inf
i
t̂i

lk,s,j (θ)

 (10)

Recall that inf
i
t̂i denote the first transition time.
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Complete likelihood function
Suppose there are a total of K individuals, S transition types, and J interview waves. The
complete log likelihood function is given by

l (θ) =
K∑

k=1

S∑
s=1

J−1∑
j=1

lk,s,j (θ) , (11)

where θ denotes the set of parameters to be estimated, and

lk,s,j (θ) = Yk,s,j lnλk,s(t̂k,j)− Rk,s(tk,j)

∫ min{t̂k,j ,tk,j+1}

tk,j

λk,s(u)du

− Rk,s(t̂k,j)

∫ tk,j+1

min{t̂k,j ,tk,j+1}
λk,s(u)du,

Here, we introduce two indicator variables: (1) Yk,s,j = 1 if transition type s is observed
between the j th and (j + 1)th interviews, and (2) Rk,s(t) = 1 if the individual is exposed
to the risk of transition type s at time t.
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EM-algorithm

Now, we can separately calculate the conditional expectation to obtain Q(θ|θ(i)).

Q(θ|θ(i)) = Qtrunc(θ|θ(i)) + Qfull(θ) (12)

i. Qtrunc :

Qtrunc(θ|θ(i)) =
K∑

k=1

S∑
s=1

∑
j :tj<inf

i
t̂i

E
1f |θ(i)

[
Eτtrunc |1f ,θ(i) [lk,s,j(θ)]

]

=
K∑

k=1

S∑
s=1

∑
j :tj<inf

i
t̂i

1∑
m=0

P(1f (tj) = m|θ(i))E
[
lk,s,j(θ)|τtj ≥ τ̃tj ,1f (tj) = m,θ(i)

]

28 / 22



EM-algorithm

Probability of being functionally disabled at least once before t

Note that

P(1f (t) = 0|Zt ,θ
(i)) =

{
exp

(
−
∫ t
0 ϕ1(u) + ϕ3(u)du

)
, if Zt = H

0 , if Zt = F

Accordingly, P(1f (t) = 1|Zt ,θ
(i)) = 1− P(1f (t) = 0|Zt ,θ

(i))
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EM-algorithm
Expectation under truncation

E
[
lk,s,j(θ)|τtj ≥ τ̃tj ,1f (tj) = 0,θ(i)

]
= Yk,s,j log ϕk,s(t̂j)− Rk,s(tj)

∫ min{t̂j ,tj+1}

tj

ϕk,s(u)du

− Rk,s(t̂j)

∫ tj+1

min{t̂j ,tj+1}
ϕk,s(u)du,

E[lk,s,j(θ)|τt1 ≥ τ̃t1 ,1f (tj) = 1,θ(i)]

=E
[
Yk,s,j log

(
ϕk,s(t̂j) + µs(τt̂j )

)
− Rk,s(tj)

∫ min{t̂j ,tj+1}

tj

ϕk,s(u) + µs(τu)du

− Rk,s(t̂j)

∫ tj+1

min{t̂j ,tj+1}
ϕk,s(u) + µs(τu)du|τtj ≥ τ̃tj ,1f (tj) = 1,θ(i)

]
,

(13)
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EM-algorithm

Figure 6. An example of an individual’s simulated health transition history.
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EM-algorithm

To approximate (13), we use Monte Carlo simulation.

1. Using time-rescaling theorem and Ogata’s thinning method, obtain random samples

from T
(n)
t1 |1f (t1) = 1,θ(i) until we have N number of samples such that T

(n)
t1 ≤ T̃t1 .

Note that τ
(n)
t1 = t − T

(n)
t1 .

2. Approximate the conditional expectation under truncation

(13) ≈

∑N
n=1 Yk,s,j log

(
ϕk,s(t̂j) + µs(τ

(n)

t̂j
)
)
− Rk,s(tj)

∫ min{t̂j ,tj+1}
tj

ϕk,s(u) + µs(τ
(n)
u )du

N
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EM-algorithm

ii. Qfull :

Qfull(θ) =
K∑

k=1

S∑
s=1

∑
j :tj≥inf

i
t̂i

lk,s,j (θ) (14)

This is the case after the first disability/recovery time (if any). Note that after the first
disability/recovery transition, we can remove the expectation since 1f (t) = 1 and
τtj = τ̃tj with probability 1.
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EM convergence: background intensity parameters

Figure 7. Background intensity coefficients updated by EM algorithm.
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EM convergence: Hawkes kernel parameters

Figure 8. Hawkes kernel coefficients updated by EM algorithm.
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