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Movements with Momentum

Most stochastic models used in quantitative finance and insurance
assume the Markov property because of its mathematical tractability.
One commonly observed phenomenon violating the Poisson arrival as
well as the Markov assumption is the momentum effect.
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Beyond the Markov Models

Does the concept of the “momentum effect” apply to health transition
dynamics?
To capture this momentum effect, what alternative methods can we
use?
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Introduction



Introduction

Understanding the dynamics of health transition is crucial for pricing
aged care products effectively in the evolving health market.
In particular, impact of functional disability on future transitions has
been commonly studied with respect to activities of daily living (ADL)
dependencies [1]–[3].
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Previous Studies

[1]–[3] mainly assume the Markov property for modelling health
transitions, for which the probabilities of transition at each age depend
on the current status only.
Showing that the probabilities of functional status transitions are
duration dependent, another line of research [4], [5] assumes
semi-Markov process models to incorporate not only age and the
current status but also on the duration in the current state.
However, the state and duration effect with respect to the past
functional disability experience has been less studied.
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Motivation

Figure 1. Crude health transition rates with respect to the number of past
functional disabilities.

Our explanatory data analysis suggests that the elderly with prior
functional disabilities are at higher risk of experiencing it again and
have higher mortality rates than those without a history of disability. 9
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Momentum and a Hawkes Process

A counting process with a stochastic intensity is called a doubly
stochastic Poisson process.
A Hawkes process [6] is a popular doubly stochastic process with
self-exciting properties; an event occurrence increases the probability
of the occurrence of another event.
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Momentum and a Hawkes Process
Definition
A Hawkes process is a point process N(t) which is characterized by its
conditional intensity λ(t) with respect to its natural filtration:

λ(t|Ft−) = ϕ(t) +
∫ t

0
µ(t − s)dN(s), (1)

where ϕ(t) is the background intensity function, and the µ(t) is the
excitation function satisfying

∫∞
0 µ(s)ds < 1.

Hawkes processes model self-exciting properties in diverse fields:
Finance: Hawkes [7] and Da Fonseca and Zaatour [8]
Insurance: Swishchuk, Zagst, and Zeller [9] and Jung, Lee, and Xu [10]
Epidemiology: Browning, Sulem, Mengersen, et al. [11]
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Goal

Our goal is to estimate the intensity of age and gender-specific
transitions by incorporating the impact of the past functional disability
as well as time spent in the current state using a Hawkes process.
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Three-State Health
Transition Model



Data Preparation I

We use the RAND HRS Data 1992-2018 from the U.S. Health and
Retirement Study (HRS), a nationally representative longitudinal panel
survey.1

The HRS is a biennial survey which began in 1992 and follows up with
interviews of initially non-institutionalised Americans aged 50 and
above.
The health state is determined by a person’s ability to perform
activities of daily living (ADLs), such as bathing, toileting, and
dressing.

1https://hrs.isr.umich.edu/data-products
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Data Preparation II

Figure 2. Six activities of daily livings (ADLs) (credit: [12])

Two or more ADL dependencies indicate functional disability, in line
with long-term care insurers’ practice.
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Three-State Health Transition Model I

Figure 3. The three-state health transition model: H, F, and D denote healthy,
functionally disabled, and dead states, respectively.
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Three-State Health Transition Model II
The transition intensity for individual k of transition
type s ∈ {1, 2, 3, 4} at time t is given by

λs(t) = ϕs(t)
background intensity

+ µs(t − Tt)
exciting function

· 1F(t)
disability indicator

,

ϕs(t) captures the impact of observable variates such as the (scaled)
age xk(t) and the gender indicator Fk at time t.
µs(·) captures the impact of the past functional disability and the
duration in the current state (t − Tt, where Tt is the latest transition
time).
1F(t) = 1 if functionally disabled at least once before time t.
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Three-State Health Transition Model III

Choice of Hawkes kernels µs(·):
Exponential kernel (monotonic decay):

µs(x) = αs e−δsx, αs ≥ 0, δs > 0, αs < δs.

Rayleigh kernel (non-monotonic decay):

µs(x) = θs(x + κs) e−ηs(x+κs)
2/2, θs ≥ 0, ηs > 0, κs > 0, θs < ηs.
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Estimation



Maximum Likelihood Estimation
Suppose there are a total of K individuals, S transition types, and J
interview waves. The complete log likelihood function is given by

l (θ) =
K∑

k=1

S∑
s=1

J−1∑
j=1

lk,s,j (θ) , (2)

where θ denotes the set of parameters to be estimated, and

lk,s,j (θ) = Yk,s,j lnλk,s(̂tk,j)− Rk,s(tk,j)

∫ min{t̂k,j,tk,j+1}

tk,j

λk,s(u)du

− Rk,s(̂tk,j)

∫ tk,j+1

min{t̂k,j,tk,j+1}
λk,s(u)du,

Here, we introduce two indicator variables: (1) Yk,s,j = 1 if transition type s
is observed between the jth and (j + 1)th interviews, and (2) Rk,s(t) = 1 if
the individual is exposed to the risk of transition type s at time t. 21



Estimation under Left Truncation & Censoring I

When an individual joined the survey after the age of 50 and he/she
was not in a functionally disabled state, we cannot observe

1. 1F(t1): presence of past functional disability
2. Tt1 : the latest transition time before the first interview (if any)

We use an EM algorithm to find maximum likelihood estimates in the
presence of missing values.
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Estimation under Left Truncation & Censoring II
EM-algorithm for Hawkes process

1. Initialize θ(1): We initialize the parameters assuming no truncation.
2. For i = 1, 2, 3, . . . , iterate E-step and M-step until convergence

2.1 E-step: Since analytical solution is unavailable, we perform Monte
Carlo approximation to obtain the Q value:

Q(θ|θ(i)) = E
1F,τtrunc|data,θ(i) [l(θ)] = E

1F|data,θ(i)

[
Eτtrunc|1F,data,θ(i) [l(θ)]

]
(3)

We use 10,000 simulated individual’s health transition history sampled
from θ(i).

2.2 M-step: We use numerical optimization algorithm to obtain the next
estimates2.

2We use optim function in R
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Results



Estimation Results I. Goodness of Fits: LRT
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Estimation Results I. Goodness of Fits: AIC&BIC
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Estimation Results II. Estimated Kernels

Figure 4. Estimated Hawkes kernels for exponential and Rayleigh kernels
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Estimation results III. Future Life Expectancy
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Estimation Results IV. Insurance Pricing
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Estimation Results IV. Insurance Pricing
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Discussions and Conclusions

We proposed and estimated a three-state health transition model that
incorporates the impact of a previous functional disability.
Since future health transitions are influenced by recent transitions, a
Hawkes process is a natural choice to model health transitions.
Our health transition model using a Hawkes process effectively
addressed the effect of health transition history on future health
transitions.
We calculated insurance prices for a life annuity and a long-term care
policy using simulated health transitions.
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